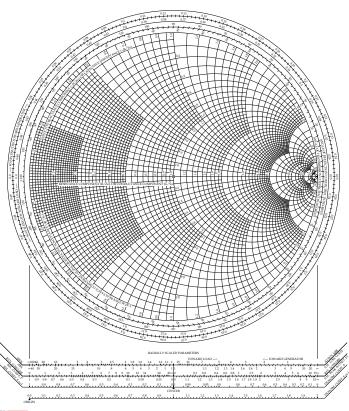
Utilisation de l'abaque de Smith

EE-200 Electromagnétisme – lignes et ondes

Prof. R. Fleury, Laboratory of Wave Engineering, EPFL romain.fleury@epfl.ch

Qu'est ce que l'abaque de Smith?



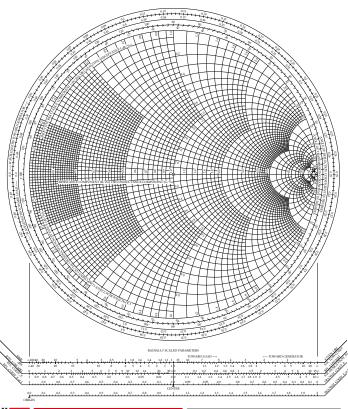
Abaque de Smith = graphique représentant l'impédance de ligne normalizée $\tilde{Z}(z)$ en fonction du coefficient de réflexion de ligne $\Gamma(z)$

Tous les contours circulaires sur l'abaque correspondent à $\tilde{Z}(z)$, il n'y a pas de contour ou de lignes pour repérer $\Gamma(z)$.

Il faut bien noter que l'impédance $\tilde{Z}(z)$ représentée sur l'abaque est normalisée par la valeur de l'impédance caractéristique de la ligne et n'a pas d'unité:

$$\tilde{Z}(z) = \frac{Z(z)}{Z_0}$$

Le lien entre Z et Γ



Dans toute ligne de transmission:

$$\tilde{Z}(z) = \frac{1}{Z_0} \frac{V(z)}{I(z)} = \frac{1}{Z_0} \frac{V^+ e^{-j\beta z} [1 + \Gamma(z)]}{\frac{V^+}{Z_0} e^{-j\beta z} [1 - \Gamma(z)]}$$

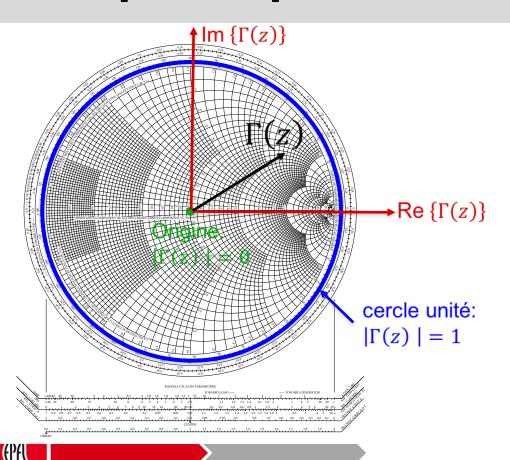
avec
$$\Gamma(z) = \Gamma_L e^{j2\beta z}$$
, $|\Gamma(z)| = |\Gamma_L| \le 1$

$$\Rightarrow \tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$$

correspondance directe entre $\tilde{Z}(z)$ et $\Gamma(z)$

Pour quoi l'abaque est il rond ?

$$\tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$$

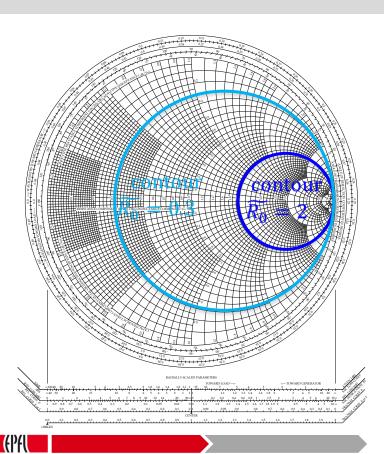


Parce que $|\Gamma(z)| \le 1$ et que l'abaque représente toutes les valeurs possibles de $\Gamma(z)$ dans le disque unité du plan complexe

Pour tout $\Gamma(z)$ dans le disque unité, les contours de l'abaque nous donne $\tilde{Z}(z)$

Comment l'abaque est-il construit ?

$$\tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$$

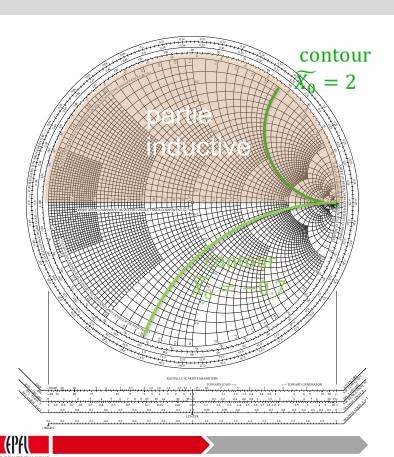


D'abord on a séparé $\tilde{Z}(z)$ en partie réelle et imaginaire: $\tilde{Z}(z) = \tilde{R}(z) + j\tilde{X}(z)$

Puis, on a représenté dans le plan les contours ayant $\tilde{R}(z) = \tilde{R_0}$ constants pour plusieurs valeurs fixes de $\tilde{R_0}$. Ces contours correspondent à tous les coefficients de réflexions $\Gamma(z)$ associés à $\tilde{Z}(z) = \tilde{R_0} + j\tilde{X}(z)$

Comment l'abaque est-il construit ?

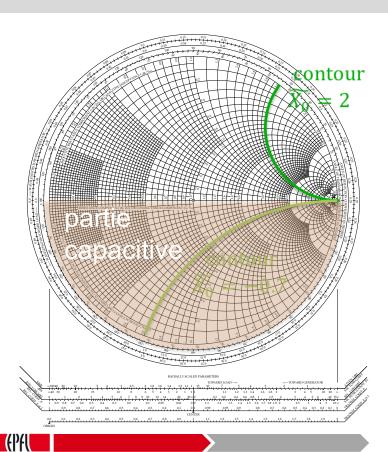
$$\tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)} = \tilde{R}(z) + j\tilde{X}(z)$$



On a aussi représenté dans le plan les contours ayant $\tilde{X}(z) = \widetilde{X_0}$ constants pour plusieurs valeurs fixes de $\widetilde{X_0}$. Ces contours correspondent à tous les coefficients de réflexions $\Gamma(z)$ associés à $\tilde{Z}(z) = \tilde{R}(z) + j\widetilde{X_0}$

Comment l'abaque est-il construit ?

$$\tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)} = \tilde{R}(z) + j\tilde{X}(z)$$

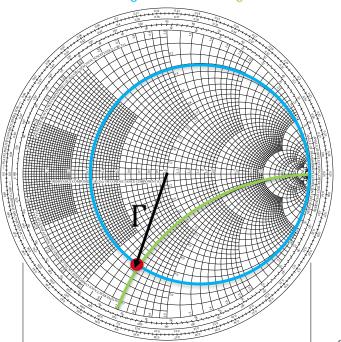


On a aussi représenté dans le plan les contours ayant $\tilde{X}(z) = \widetilde{X_0}$ constants pour plusieurs valeurs fixes de $\widetilde{X_0}$. Ces contours correspondent à tous les coefficients de réflexions $\Gamma(z)$ associés à $\tilde{Z}(z) = \tilde{R}(z) + j\widetilde{X_0}$

Intersection de deux contours

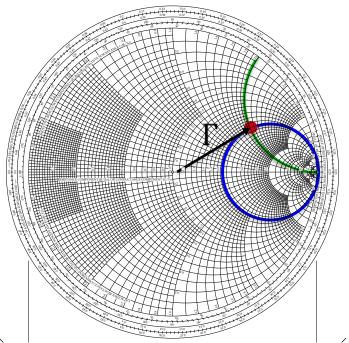
$$\tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)} = \tilde{R}(z) + j\tilde{X}(z)$$

contours $\widetilde{R_0} = 0.3$ et $\widetilde{X_0} = -0.7$



• intersection : $\tilde{Z} = 0.3 - j0.7$, charge capacitive

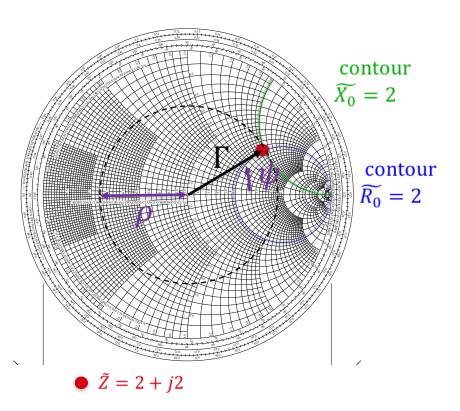
contours $\widetilde{R_0} = 2$ et $\widetilde{X_0} = 2$



• intersection : $\tilde{Z} = 2 + j2$, charge inductive

Comment lire Γ ?

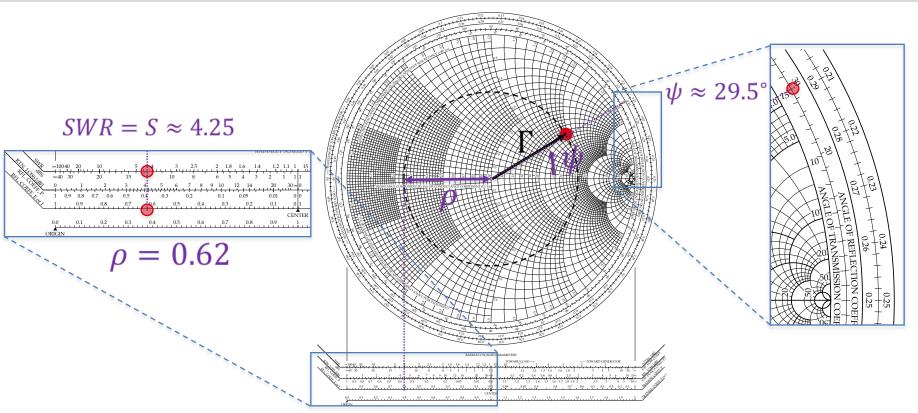
$$\tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)} = \tilde{R}(z) + j\tilde{X}(z)$$



$$\Gamma = \rho e^{j\psi}$$

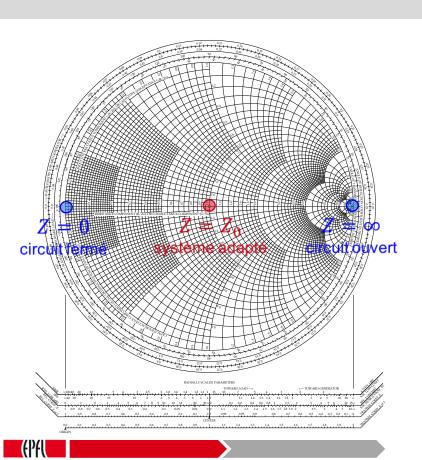
Comment lire Γ ?

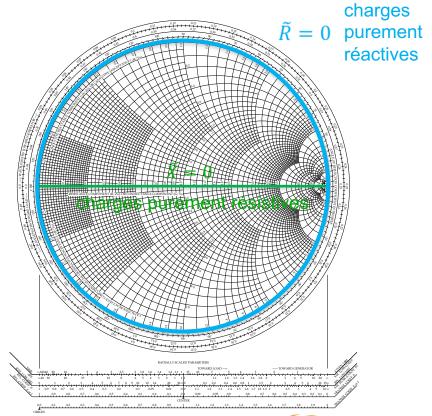
$$\Gamma = \rho e^{j\psi} \quad \tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)} = \tilde{R}(z) + j\tilde{X}(z)$$



Points et contours remarquables

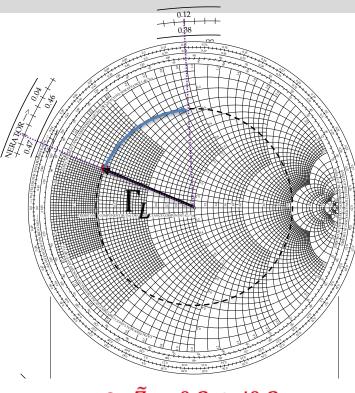
$$\tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)} = \tilde{R}(z) + j\tilde{X}(z)$$





Faire varier z

$$\tilde{Z}(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)} = \tilde{R}(z) + j\tilde{X}(z)$$



Prenons un exemple. Une ligne d'impédance 50 Ω est terminée en z=0 par une charge $Z_L=10+j10~\Omega$. Il s'agit du point rouge sur l'abaque ci contre.

Cette charge a un coefficient de réflexion Γ_L que l'on peut lire sur l'abaque. On lit $\Gamma_L = 0.67e^{j\,156^\circ}$.

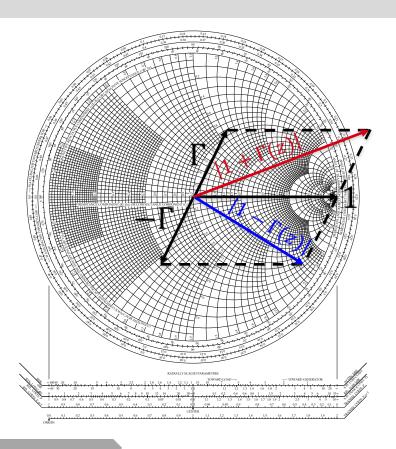
Quand on s'éloigne de la charge, le coefficient devient $\Gamma(z) = \Gamma_L e^{j2\beta z}$: puisque z < 0, on suit le cercle de rayon $\rho = 0.67$ dans le sens *horaire*.

La distance parcourue est graduée sur le périmètre externe de l'abaque, en unité de λ : pour l'exemple ci contre, on a $\Delta l = 0.12\lambda - 0.032\lambda = 0.088\lambda$

Tension et courant sur l'abaque

$$V(z) = V^{+}e^{j\beta z}(1+\Gamma)$$

$$I(z) = V^{+}/Z_{0}e^{j\beta z}(1+\Gamma)$$

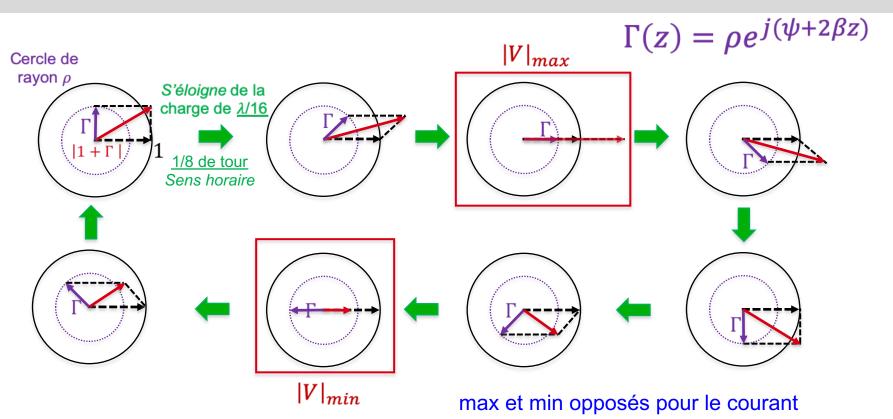


$$|V(z)/V^+| = |1 + \Gamma(z)|$$

$$|I(z)Z_0/V^+| = |1 - \Gamma(z)|$$

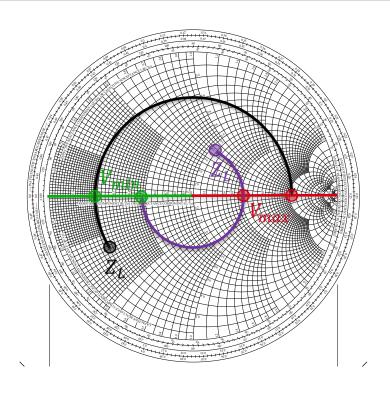
Minima et maxima de tension

$$|V(z)|/|V^+| = |1 + \Gamma(z)|$$



Minima et maxima de tension

$$\Gamma(z) = \rho e^{j(\psi + 2\beta z)}$$



axe réel négatif: $\psi + 2\beta z = -(2m + 1)\pi$ =minimum de tension

axe réel positif: $\psi + 2\beta z = -m2\pi$ =maximum de tension

charge capacitive: $\tilde{Z}_L \in \text{demi cercle inférieur}$ =rencontre V_{min} avant V_{max}

charge inductive= $\tilde{Z}_L \in \text{demi cercle sup\'erieur}$ =rencontre V_{max} avant V_{min}

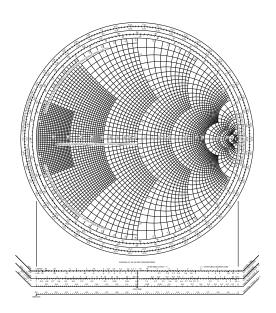
L'abaque de Smith pour l'admittance Y = 1/Z $Z = \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$

$$Y = 1/Z$$

$$Z = \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$$

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{Y_0 - Y_L}{Y_0 + Y_L}$$
 $\tilde{Y} = \tilde{G} + j\tilde{B} = \frac{1 - \Gamma(z)}{1 + \Gamma(z)}$

$$\tilde{Y} = \tilde{G} + j\tilde{B} = \frac{1 - \Gamma(z)}{1 + \Gamma(z)}$$



On utilise le même abaque: les contours R et X sont maintenant les contours G et B. La seule différence est que les charges capacitives correspondent maintenant à la partie supérieure de l'abaque, et les charges inductives à la partie inférieure.

Compléter les cadres C59- C60 et C61 du cours

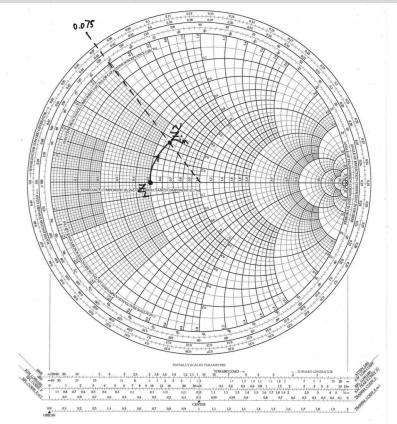
cf. cours et notes associées

$$\tilde{Z}_L = \frac{50 \Omega}{100 \Omega} = 0.5$$

$$\tilde{Z}_L = \frac{50 \ \Omega}{100 \ \Omega} = 0.5$$
 $\frac{l}{\lambda} = \frac{86.25}{150} = 0.575 = 0.5 + 0.075$

Exemple 1 : Impédance d'entrée avec une charge **purement résistive.** Trouver l'impédance d'entrée d'une ligne de transmission sans perte d'impédance caractéristique 100Ω et de longueur 86.25cm terminée par une charge résistive de 50Ω . Prendre $\lambda = 1.5$ m.

$$\begin{split} \tilde{Z}_{in} &= 0.59 + j0.36 \\ \Longrightarrow Z_{in} &= Z_0 Z_{in} = 59 + j36 \Omega \end{split}$$



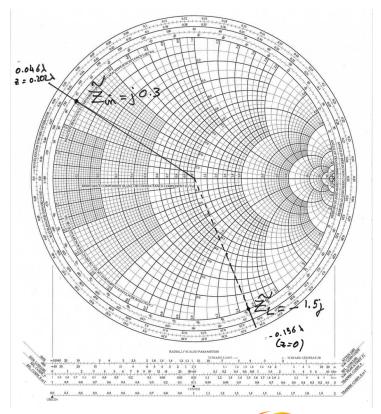
$$\tilde{Z}_L = \frac{-j75 \ \Omega}{50 \ \Omega} = -1.5j$$

$$\tilde{Z}_L = \frac{-j75 \ \Omega}{50 \ \Omega} = -1.5j$$
 $\frac{l}{\lambda} = 1.202 = 1 + 0.202$

Exemple 2 : Impédance d'entrée avec une charge purement réactive. Trouver l'impédance d'entrée d'une ligne de transmission sans perte d'impédance caractéristique 50Ω et de longueur 1.202λ terminée par une charge $Z_L = 0 - j75\Omega$.

$$\tilde{Z}_{in} = j0.3$$

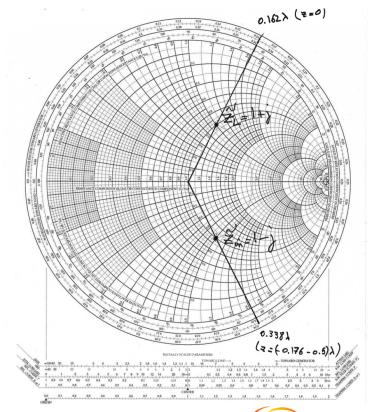
 $\Rightarrow Z_{in} = Z_0 Z_{in} = j15\Omega$



$$\tilde{Z}_L = \frac{100 + j100 \,\Omega}{100 \,\Omega} = 1 + j \, \frac{l}{\lambda} = 0.676 = 0.5 + 0.176$$

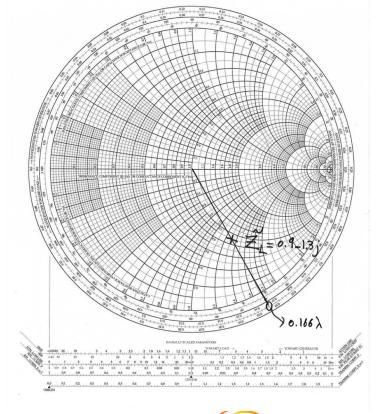
Exemple 3 : Impédance d'entrée avec une charge complexe. Trouver l'impédance d'entrée d'une ligne de transmission sans perte d'impédance caractéristique 100Ω et de longueur 0.676λ terminée par une charge $Z_L=100+j100\Omega$.

$$\begin{split} \tilde{Z}_{in} &= 1 - j \\ \Longrightarrow Z_{in} &= Z_0 Z_{in} = 100 - j 100 \Omega \end{split}$$



Exemple 4 : charge inconnue. On mesure sur une ligne un rapport d'onde stationnaire S=3.6 et une distance au premier minimum de tension de $z_{min}=-0.166\lambda$. Trouver la valeur de l'impédance normalisée de la charge.

$$\tilde{Z}_L = 0.9 - 1.3j$$

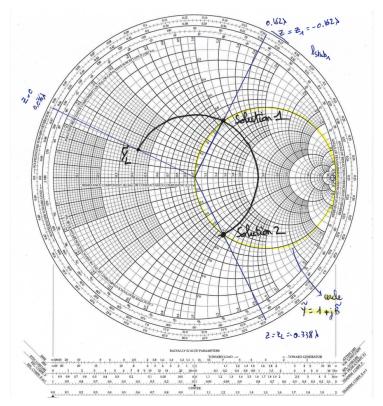


$$\tilde{Y}_L = \frac{1/(160 - j80 \Omega)}{1/80 \Omega} = 0.4 + 0.2j$$

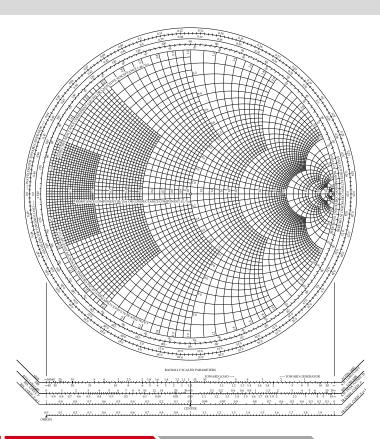
Exemple 5 : Adaptation d'impédance par une ligne parallèle court-circuitée (parallèle stub). Etant donnée une ligne avec $Z_0=80\Omega$ et une charge $Z_L=160-j80\Omega$, adapter la ligne en trouvant la position et la longueur du stub court-circuité.

Solution 1:
$$\tilde{Y}_1 = -j$$
 en $z_1 = -0.126\lambda$
 $l_{stub,1} = 0.125\lambda$

Solution 2:
$$\tilde{Y}_2 = +j$$
 en $z_2 = -0.302\lambda$
 $l_{stub.2} = 0.375\lambda$



Conclusion



Deux approches pour résoudre les problèmes:

- 1) Approche numérique: calculs directs
- 2) Approche graphique: Abaque de Smith

